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Abstract

A characteristic-based unsteady viscous flow solver is developed with preconditioning that is uniformly applicable

for Mach numbers ranging from essentially incompressible to supersonic. A preconditioned flux-difference formulation

for nondimensional primitive variables is a key element of the present approach. The simple primitive-variable nu-

merical flux is related to Roe�s flux-difference scheme and preserves contact discontinuities using primitive variables,
with or without preconditioning. Preconditioning by a single-parameter diagonal matrix conditions the system eigen-

values in terms of nondimensional local velocity and local temperature. An iterative implicit solution algorithm is given

for the preconditioned formulation and is used for several simple test and validation cases. These include an inviscid

shock-tube case, flat-plate boundary layer flow at low Mach number, viscous flow past a circular cylinder at low

Reynolds number and with different thermal boundary conditions, and validation cases for incompressible and tran-

sonic flows.
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1. Introduction

Numerical algorithms for viscous compressible flow face well-known difficulties for low Mach number

conditions. If the total enthalpy is constant (isoenergetic flow), then steady solutions approach the in-

compressible constant-density limit as Mach number approaches zero. Such problems are often solved

using the incompressible flow equations and artificial compressibility formulations. Low-speed flows with
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heat transfer have variable density, and thus incompressible formulations are not suitable. It has long been

observed that the stability and/or convergence properties of most compressible flow algorithms is degraded

for low Mach number flows. A number of preconditioning techniques have been developed to overcome

these difficulties, and recent review articles by Turkel [1,2] give detailed accounts of many of these tech-

niques. A discussion of previous related work on preconditioning methods for arbitrary Mach number and

related characteristic-based flux approximations for viscous flow applications will help to provide context

for the present formulation. Some discussion of iterative implicit unsteady flow solvers is also given.

1.1. Preconditioning for arbitrary Mach number

A simple preconditioning technique was introduced by Briley et al. [3] to improve the convergence rate of

an implicit ADI approximate-factorization scheme applied to the steady isoenergetic Navier–Stokes
equations at low Mach number. Introducing nondimensional variables with reference Mach number Mr, a

constant preconditioning matrix diagð1=cM2
r ; 1; 1Þ was added to the isoenergetic equations to remove an ill-

conditioned behavior in the approximate-factorization error at low Mach number. This technique greatly

improved the convergence rate at Mr ¼ 0:05 for turbulent flow through a 90� channel bend. The isoener-
getic formulation is applicable to steady isoenergetic viscous or inviscid flow at arbitrary Mach number and

had been used earlier by McDonald and Briley [4] for supersonic flows. Steger and Kutler [5] identified

factorization error as a source of difficulty at low Mach number.

Choi and Merkle [6] studied the convergence of implicit solutions for both one and two-dimensional
inviscid test problems. Their results gave further detailed evidence that poor convergence at low Mach

number is associated with factorization errors in the implicit algorithm, and only indirectly with stiffness in

the system eigenvalues. They then addressed this problem by introducing a preconditioning matrix

diagð1; 1; 1;M�2Þ into the compressible Euler equations written in (q; u; v; p) variables. These equations were
then transformed to conservative variables (q; qu; qv; et) for solution. At M ¼ 0:05, this method gave

convergence rates identical to those using the artificial compressibility equations. This preconditioning is

similar to that of [3] but distinct since it is not restricted to isoenergetic flows, and it is implemented using

conservative variables. Merkle and Choi [7] later concluded that the scheme of [6] was not adequate for
inviscid flow below M ¼ 0:01 and developed a perturbation expansion approximation that gave conver-
gence rates independent of Mach number as low as 10�5, for a duct flow with substantial heat addition.

Viviand [8] gave a systematic study of pseudo-unsteady first-order systems for steady inviscid flow

calculations. A general parametric family of first-order systems for steady compressible isoenergetic flow

calculations was defined, subject to conditions of hyperbolicity and a condition on the number of negative

eigenvalues.

Turkel [9] devised a generalized preconditioning matrix for the artificial compressibility method in

(p; u; v) variables that includes time derivative terms analogous to those in [3]. He also applied this gen-
eralization to the compressible equations in terms of (p; u; v; S), (p; u; v; q), and isoenergetic variables

(p; u; v), thus providing unification of several existing compressible and artificial compressibility ap-

proaches. Turkel suggested a preconditioning parameter based on the local velocity, with a limiter to avoid

singular behavior near stagnation points. Briley et al. [10] compared Turkel�s artificial compressibility
formulation [9] with the preconditioned isoenergetic compressible formulation of [3], using the same im-

plicit algorithm. Both of these formulations gave essentially the same convergence behavior for a viscous

flow at Mach numbers between 10�3 and 0.5, without using a local preconditioning parameter.

Choi and Merkle [11] concluded that the preconditioning of [6] was not effective for viscous flows and
proposed a new preconditioning for viscous variable Mach number flows, based on (p; u; v; T ) variables.
These preconditioned equations are similar to the perturbation equations of [7] but include a mechanism

for controlling inviscid and viscous time-step parameters. The preconditioning matrix contains separate

inviscid ðbM2Þ and viscous ðdÞ parameters, where M is a local Mach number modified with a limiter to
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avoid singular behavior near stagnation points. This method was found to be effective at low Mach number

for several test calculations ranging from inviscid to highly viscous flows.

Weiss and Smith [12,13] developed a preconditioning matrix related to that of [11], using (p; u; v; T )
variables and without assuming an ideal gas. It is implemented with a Roe-type flux-difference splitting and

an explicit multistage algorithm, with dual time stepping for unsteady flows. Pletcher and Chen [14] de-

veloped a preconditioned iterative unsteady formulation, with pseudo-time derivative terms preconditioned

by a constant matrix diagð1=cM2
r ; 1; 1; 1Þ and using nondimensional (p; u; v; T ) variables. Edwards and Liou

[15] have developed extensions of the advective upwind splitting method (AUSM) for all flow speeds. They
employ the preconditioning matrix C of Choi and Merkle [11], as extended by Weiss and Smith [12]. This

scheme is successfully demonstrated for several two-dimensional viscous and inviscid flows over a wide

range of Mach numbers. Edwards and Thomas [16] utilize the Weiss–Smith [12] preconditioning and a Roe-

type scheme based on primitive variables (q; u; v; p).
In his recent review article, Turkel [2] gives two motivations for preconditioning: (1) preconditioning of

time derivatives to accelerate convergence and (2) modification of upwinding schemes or artificial dissi-

pation for central differences to achieve accuracy at low Mach numbers. Accordingly, the preconditioning

matrix for time derivatives is treated separately from that included with dissipation terms. The treatment
given is very general and includes centered schemes with scalar or matrix dissipation as well as upwind

schemes. The closely related preconditionings of Turkel [9], Choi and Merkle [11], and Weiss and Smith [12]

are compared, and the selection of preconditioning parameters and local limiters are discussed in detail.

1.2. High-resolution inviscid fluxes for viscous flows

A review article by Roe [17] discusses the emergence of characteristic-based approximations for the

compressible Euler equations. A more recent and comprehensive account of methods based on Riemann

solvers is given by Toro [18]. These schemes specifically address the presence of shocks and other dis-

continuities. Perhaps the most widely used is Roe�s flux-difference scheme [19], which employs an exact
solution to an approximate Riemann problem to define a set of averaged variables and fluxes that preserve

one-dimensional discontinuities at cell interfaces. The primitive-variable flux formulation introduced here is
derived as a modification of Roe�s flux.
For viscous flow, there is evidence that accurate resolution of thin shear layers is enhanced by char-

acteristic-based inviscid approximations that preserve contact or shear discontinuities known as slip lines in

compressible flows and as vortex shests in incompressible flows. Roe�s flux [19] and the AUSM flux of Liou

and Steffan [20] are examples of fluxes that preserve contact discontinuities. Evidence of improved viscous

resolution using an implementation of Roe�s flux is given by Simpson and Whitfield [21], who demonstrated
that the Blasius solution could be resolved with as few as 3–4 grid points defining the boundary layer

profile. In the present authors� experience, schemes that do not preserve inviscid discontinuities require
higher resolution. The primitive-variable inviscid flux formulation developed here also exactly satisfies slip-

line discontinuities, with or without preconditioning, and hence provides high resolution of viscous flows at

high Reynolds number.

1.3. Present preconditioned flux-difference formulation

The present study seeks to develop a single high-resolution unsteady viscous flow solver with precon-

ditioning that is uniformly applicable for Mach numbers ranging from essentially incompressible to su-

personic. A preconditioned inviscid flux-difference formulation for primitive variables is a key element of

the present approach. A simple preconditioned flux related to Roe�s flux-difference scheme [19] is developed
that preserves contact discontinuities using primitive variables, with or without preconditioning. This

property is considered to be advantageous for viscous flows at high Reynolds number. A nondimension-
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alization as in [3] extracts the single parameter Mr representing the global scaling of variables in the system

of equations and boundary conditions. Preconditioning by diag½1; 1; 1; bðMrÞ� with the primitive-variable
choice q � ðq; u; v;w; pÞT provides Oð1Þ eigenvalues that depend on local velocity and sound speed and also
leads to very simple eigensystems. The system reduces to its unpreconditioned form for b ¼ 1, giving a
particularly simple flux-difference scheme in primitive variables.

The present preconditioning resembles that of [3] in its use of a constant diagonal matrix based on

nondimensional primitive variables. The diagonal preconditioning matrix used here has the same form as

that of Choi and Merkle [6], except that a constant global parameter bðMrÞ replaces the local Mach number
of [6]. It will later be shown that the resulting preconditioned eigenvalue behavior is fundamentally different

near stagnation points and for large temperature variation. The present method has not encountered

difficulty in viscous flows, as reported by Choi and Merkle [11], and has not required viscous precondi-

tioning parameters, as used in [11,12,15,16]. The present method also differs from that of [6] and [11] in its

use of characteristic-based primitive-variable fluxes and an iterative implicit algorithm. Finally, the Roe-

type flux-difference approach used here is similar to that used in [12,16] but the present eigensystems and

flux formulas are different due to the preconditioning.

1.4. Iterative implicit algorithm

The present preconditioned primitive-variable formulation is solved using an iterative implicit discret-

ized-Newton scheme with lower–upper approximate factorization (LU/AF) subiteration. This flow solver
has the same basic structure as the incompressible flow solver of Taylor and Whitfield [22–24] but is

adapted for compressible flow with preconditioning and is implemented in primitive variables. It is com-

prised of an iterative implicit finite-volume scheme, conservative primitive-variable fluxes with third-order

MUSCL extrapolation, numerically computed state-vector flux linearizations, and approximate-Newton

iteration solved using LU/SGS relaxation.

Iterative implicit schemes are now advantageous for both steady and unsteady flows because they reduce

or eliminate linearization and/or factorization errors at each time step, allowing larger time steps and/or

improving time accuracy. Iterative implicit relaxation methods were introduced by Chakravarthy [25] and
Rai [26] for compressible flow and adapted to incompressible flow by Pan and Chakravarthy [27] and

Rogers and Kwak [28], using artificial compressibility. More recently, Whitfield and Taylor et al. [22,29]

introduced a multiple Newton/relaxation subiteration with both nonlinear and less expensive linear itera-

tions chosen to improve efficiency and robustness at large CFL number. It has subsequently evolved to

include multigrid acceleration and scalable parallelism (e.g., Pankajakshan et al. [30]), although the present

paper does not address these extensions.

The LU/SGS relaxation is equivalent to a lower–upper approximate factorization (LU/AF) scheme.

LU approximate factorization was first proposed by Jameson and Turkel [31] for scalar hyperbolic
equations and first implemented for the Euler equations by Buratynski and Caughey [32]. Jameson and

Yoon [33] proposed an LU symmetric successive overrelaxation LU/SSOR scheme with multigrid ac-

celeration for the steady two-dimensional Euler equations, and an LU/SGS scheme for approximate

Newton iteration of the steady two-dimensional Euler and Navier–Stokes [34] equations. Yoon and Kwak

[35] have adapted the LU/SGS scheme of [33] for application to incompressible flows. Many variants of

implicit approximate factorization approaches exist in the context of current Euler and Navier–Stokes

algorithms. An effort to place many of these in both historical and algorithmic perspective is given by

Briley and McDonald [36].
The remainder of this paper is organized as follows: a primitive-variable flux-difference formulation is

given in Section 2, and nondimensional flux approximations for the Euler equations are given in Section 3.

In Section 4, preconditioned primitive-variable flux-difference approximations that preserve slip-line dis-

continuities are developed. In Section 5, these preconditioned primitive-variable fluxes are incorporated
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into an iterative implicit scheme for the unsteady three-dimensional Navier–Stokes equations. Results for

an inviscid shock-tube case computed with the primitive-variable flux but without preconditioning are given

in Section 6. Results with preconditioning are given in Section 7 for a flat-plate boundary layer flow at low

Mach number, and for highly viscous flow past a cylinder at low Reynolds number, with and without heat

transfer. Experimental validations for incompressible and transonic flows are given in Section 8, followed

by concluding remarks in Section 9. Appendix A gives nonsingular eigensystems for general dynamic

curvilinear coordinates in three dimensions.

2. Characteristic-based primitive-variable flux-difference formulations

Consider the one-dimensional hyperbolic conservation law in conserved variables

oQ

ot
þ oFðQÞ

ox
¼ oQ

ot
þ A

oQ

ot
¼ 0: ð2:1Þ

Here, Q is the solution vector for conservative variables, F is the flux vector, and A � oF=oQ is the system

matrix for Q. The scheme

oQi

ot
þ ðdA=dV ÞiðF iþ1=2 � F i�1=2Þ ¼ 0; ð2:2Þ

approximates (2.1) on a finite volume dV with cell interface area dA. Roe�s flux approximation [19] is
commonly written as

F iþ1=2 ¼
1

2
ðFL þ FRÞ �

1

2
j ~AAjDQ; ð2:3Þ

where j ~AAj � ~AAþ � ~AA� has positive eigenvalues and can be thought of as a dissipation matrix. Roe�s method
provides an exact solution to an approximate Riemann problem using an averaged system matrix ~AA
constructed to satisfy the flux-difference relationship DF ¼ ~AAðQR;QLÞDQ. Here, QL and QR, are left and

right state variables, DF � FðQRÞ � FðQLÞ, DQ � QR �QL, and

~AA
 ¼ ~RRQð~KK
Þ ~RR�1Q : ð2:4Þ

Changing from Q to a set of primitive variables q gives

o

ot
QðqÞ þ o

ox
F½QðqÞ� ¼M

oq

ot
þ AM

oq

ox
¼ 0; ð2:5Þ

where M � oQ=oq. The system matrix for q is a ¼M�1AM . It is tacitly assumed throughout this paper

that q has been chosen so that a has simple eigenvectors; in particular, q � ðq; u; v;w; pÞT for the Euler
equations. Let K denote the diagonal matrix of eigenvalues of a and let Rq denote a set of right eigenvectors

of a. Then a can be expressed as a ¼ RqKR�1q : Primitive-variable fluxes that recognize discontinuities are
given for the finite-volume approximation of (2.5):

oQðqiÞ
ot

þ ðdA=dV ÞiðF iþ1=2 � F i�1=2Þ ¼ 0: ð2:6Þ

Alternatively, the time derivative term can be written in quasilinear form asM ioqi=ot. Here, qi andM i are

volume-averaged values.

The interfacial fluxes are derived for primitive variables using a set of averaged variables q̂qðqR; qLÞ, to be
defined subsequently. Taking DQ � M̂MDq allows (2.3) to be written in an especially simple form:
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F iþ1=2 ¼
1

2
ðFL þ FRÞ �

1

2
M̂MjâajDq: ð2:7Þ

Here, Dq � qR � qL is the difference of the left and right state variables qL and qR, across the disconti-
nuity.

3. Nondimensional flux approximations for the Euler equations

3.1. Nondimensional Euler equations in one dimension

Mathematical problem formulations based on dimensional and nondimensional variables are essentially

equivalent and do not per se alter their solutions. However, nondimensional variables can be used to extract
useful information about relative scales in equations and/or boundary conditions that can guide the pre-

conditioned formulation. The following choice of nondimensional variables was used in [3] to study limiting

behavior as Mr ! 0 and to suggest a preconditioning that reduced factorization errors. This same nondi-

mensionalization is used here to guide the preconditioning for the characteristics-based primitive-variable

flux formulation.

The following reference quantities denoted by a subscript r are used: density, qr; velocity, Ur; temper-

ature, Tr; pressure, qrU
2
r ; length, Lr; time, Lr=Ur; energy and enthalpy, hr. With this choice of nondimen-

sional variables, all of the equations given previously in Sections 1 and 2 remain unchanged, except that the
variables are now understood to be nondimensional. The nondimensional Euler equations in one dimension

are given by (2.1) with Q ¼ ðq; qu; qetÞT, and FðQÞ ¼ ðqu; qu2 þ p; quhtÞT, where q is density, u is velocity, p
is pressure, et, is total energy, and ht is total enthalpy. These variables are related by ht ¼ et þ Ecp=q, where
Ec is an Eckardt number defined by Ec ¼ U 2

r =hr. These equations are supplemented by an equation of state
of the form q ¼ qðp; T Þ.
For a perfect gas with constant specific heat, hr � CpTr, and it follows that Ec ¼ ðc� 1ÞM2

r , where

Mr ¼ ur=cr is a reference Mach number, c2r ¼ cRTr is the reference sound speed, c ¼ Cp=Cv is specific heat

ratio, and R is the gas constant. The state equation is then given by

p ¼ qT=cM2
r ¼ qc2=c; c2 ¼ T=M2

r : ð3:1Þ

Other useful relationships are

ht ¼ M2
r c2
�
þ ðc� 1Þ 1

2
u2
�
;

et ¼ M2
r c2=c
�

þ ðc� 1Þ 1
2
u2
�
:

ð3:2Þ

3.2. Nondimensional eigensystem in one dimension

The eigensystem is easily obtained following a transformation QðqÞ to the primitive variables
q � ðq; u; pÞT. The system matrix for q is

a ¼ RqKR�1q ¼M�1AM ¼
u q 0

0 u 1=q
0 qc2 u

2
4

3
5: ð3:3Þ

84 W.R. Briley et al. / Journal of Computational Physics 184 (2003) 79–105



The Jacobian for the change of variables is given by

M ¼ oQ

oq
¼

1 0 0

u q 0

abu2=2 abqu b

2
4

3
5; ð3:4Þ

where a � c� 1 and b � M2
r . The eigenvalues of both A and a are ki ¼ ðu; uþ c; u� cÞ, and a set of right

eigenvectors for a is given by

Rq ¼
1 �q=c �q=c
0 �1 1

0 �qc �qc

2
4

3
5: ð3:5Þ

3.3. Averaged variables

It is easily verified that the Roe-averaged variables [17], denoted ~uu, ~hht, ~qq, ~cc2, satisfy ðQR �QLÞ ¼
~MMðqR � qLÞ. It therefore follows that Roe�s flux-difference property is also satisfied in terms of primitive
variables (q; u; p) as:

DF ¼ ~AADQ ¼ ~AA ~MMDq ¼ ~MM~aaDq: ð3:6Þ

Consequently, the flux formula (2.7) for (q; u; p) variables is equivalent to the Roe flux (2.3) if evaluated
using Roe averages. The primitive-variable flux is somewhat simpler for the Euler equations. An

alternative flux evaluation is used here, based on an averaged matrix âa defined using the following

averages:

q̂q ¼ 1
2
ðqL þ qRÞ; ûu ¼ 1

2
ðuL þ uRÞ;

bhtht ¼ 1
2
ðhtL þ htRÞ; ĉc2 ¼ ĥht

M2
r

� ðc� 1Þ
2

ûu2:
ð3:7Þ

Either of these averages preserves the exact solution for a three-dimensional slip-line discontinuity aligned

with the grid.

3.4. Other primitive variable choices

It is helpful to recall that Q denotes conservative variables, q ¼ ðq; u; pÞ denotes the primary set of
primitive variables, A ¼ oF=oQ, M ¼ oQ=oq, and a ¼M�1AM . It is also useful to consider a second

change of dependent variables from q to some other set w. Letting m � oq=ow and noting that AMm ¼
Mam, Eq. (2.5) becomes

Mm
ow

ot
þ o

ox
FðwÞ ¼Mm

ow

ot
þMam

ow

ox
¼ 0: ð3:8Þ

The system matrix for w is aw ¼ m�1am, and the interfacial flux approximation analogous to (2.7) is
therefore

F iþ1=2 ¼
1

2
ðFL þ FRÞ �

1

2
M̂Mjâajm̂mDw; ð3:9Þ
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where Dw � ðwR � wLÞ, which is only slightly more complicated than (2.7). It is worth noting that

jâajm̂m ¼ m̂mjâawj, since a and aw are similar matrices. The finite-volume approximation can be written as either

of

oQðwiÞ
ot

þ ðdA=dV ÞiðF iþ1=2 � F i�1=2Þ ¼ 0; ð3:10aÞ

ðMmÞi
owi

ot
þ ðdA=dV ÞiðF iþ1=2 � F i�1=2Þ ¼ 0: ð3:10bÞ

Computed results are later given for two choices of w. A change to w � ðp; u; T ÞT leads to the following
matrix definition:

m ¼
c=c2 0 �q=bc2

0 1 0
1 0 0

2
4

3
5: ð3:11Þ

Alternatively, a change to w � ðq; u; T ÞT gives

m ¼
1 0 0

0 1 0

c2=c 0 q=cb

2
4

3
5: ð3:12Þ

4. Preconditioning for arbitrary Mach number

4.1. Preconditioned formulation in primitive variables

A preconditioning matrix Cq is introduced into the quasilinear form of (2.6) as follows:

MC�1q

oq

ot
þ o

ox
FðqÞ ¼ 0: ð4:1Þ

This can be expanded and rewritten as

oq

ot
þ aC

oq

ox
¼ 0; ð4:2Þ

where aC � Cqa is the system matrix for the preconditioned formulation. An eigensystem for aC will be

needed to develop characteristic-based flux approximations. Let KC denote the diagonal matrix of eigen-

values of aC and let RC denote a set of right eigenvectors of aC. Then aC can be expressed as aC ¼ RCKCR
�1
C .

Note that it is not necessary to define AC ¼MaCM
�1 or its eigenvectors, since the form of the flux

follows directly from (4.2) rewritten as:

MC�1q

oq

ot
þMC�1q aC

oq

ox
¼ 0: ð4:3Þ

Introducing averaged variables q̂q, the flux approximation analogous to (2.7) but including the precondi-
tioning matrix ĈCq is

F iþ1=2 ¼
1

2
ðFL þ FRÞ �

1

2
M̂MĈC�1q jĈCqâajDq ð4:4Þ
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and the finite-volume approximation analogous to (2.6) is

ðMC�1q Þi
oqi

ot
þ ðdA=dV ÞiðF iþ1=2 � F i�1=2Þ ¼ 0; ð4:5Þ

where ðMC�1q Þi and qi are volume-averaged values. Selection of a preconditioning matrix for ĈCq for (4.4) is

straight-forward.

4.2. Other primitive variable choices

To change variables from q ¼ ðq; u; pÞ to w, the above development can be repeated after replacing (4.2)
with a preconditioned form of (3.10a) and (3.10b):

ow

ot
þ Cwaw

ow

ox
¼ 0: ð4:6Þ

This leads to

F iþ1=2 ¼
1

2
ðFL þ FRÞ �

1

2
M̂Mm̂mĈC�1w jĈCwâawjDw; ð4:7Þ

ðMmC�1w Þi
owi

ot
þ ðdAi=V ÞðF iþ1=2 � F i�1=2Þ ¼ 0: ð4:8Þ

Note, however, that this requires an eigensystem for ĈCwm̂m
�1âam̂m. A simpler alternative is to use

F iþ1=2 ¼
1

2
ðFL þ FRÞ �

1

2
M̂MĈC�1q jĈCqâajm̂mDw; ð4:9Þ

ðMC�1q mÞi
owi

ot
þ ðdAi=V ÞðF iþ1=2 � F i�1=2Þ ¼ 0; ð4:10Þ

instead of (4.4) and (4.5). This alternative only requires the preconditioning and eigensystem for (q; u; p)
variables ðĈCq; âaÞ. The relationship of (4.9) to (4.4) is analogous to that of the flux (3.9) to (2.7).

4.3. Preconditioning matrix for q¼ (q; u; p)T

A simple but effective preconditioning for implicit approximate factorization algorithms replaces ĈCq by a

diagonal matrix of constants that depend only on Mr, as in [3]. Specifically, let ĈCq ¼ diag½1; 1; bðMrÞ�. The
system matrix becomes

Câa ¼
ûu q̂q 0

0 ûu 1=q̂q
0 bq̂qĉc2 bûu

2
64

3
75; ð4:11Þ

where b
 � ð1
 bÞ=2 and r̂r2 � ðûub�Þ2 þ bĉc2, and its eigenvalues are

k̂k ¼ ûu; ûubþ 
 r̂r: ð4:12Þ

The choice b ¼ 1 recovers the unpreconditioned formulation. The following choice for b is sufficient to

provide well-behaved eigenvalues in terms of nondimensional variables u and T , which are assumed to be
Oð1Þ:
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bðMrÞ ¼
M2
r ðMr < 1Þ;
1 ðMr P 1Þ;





 ð4:13Þ

where Mrður; TrÞ ¼ ur=
ffiffiffiffiffiffiffiffiffi
cRTr
p

. Although dimensional reference quantities can be chosen arbitrarily to arrive

at nondimensional equations, the specific values chosen are obviously important when preconditioning is

used. In general, ur and Tr should have values representative of global flow properties for each particular
flow case. For external flows, the freestream values of ur and Tr were used for all cases considered here. A
shock-tube case is considered in which the flow is initially at rest, and much of the flow remains at rest (zero

local velocity and Mach number), while the shock itself propagates at supersonic speed. In this case, the

reference variables were chosen so that Mr ¼ 1. It is possible that more complex problems will require a
nonconstant definitions of b that depend on local variables.

4.4. Preservation of slip-line discontinuities

The capturing of a slip-line discontinuity aligned with a solid boundary is illustrated here for a three-

dimensional Cartesian grid with y normal to the boundary. The required eigensystem for Câa for general
three-dimensional dynamic curvilinear coordinate systems are given in Appendix A. The slip surface

may have discontinuous tangential shear velocities u, w and is characterized by the conditions
v ¼ Dv ¼ Dp ¼ 0. The discontinuity is captured if the following vector embedded in the dissipation

matrix is zero:

jCjR�1q Dq ¼

�vDw
vDqþ 2qv2 b�

bc2 Dv v
bc2 Dp

� vb��r
2r ðvb

þ þ rÞDvþ 1
2qr ðvb

þ þ rÞDp

� vb�þr
2r ðvb

þ � rÞDvþ 1
2qr ðvb

þ � rÞDp

2
6664

3
7775; ð4:14Þ

where r2 � ðvb�Þ2 þ bc2. The first three components are zero if v is zero, and the last two are zero if
Dv ¼ Dp ¼ 0. Consequently, the discontinuity is captured with or without preconditioning, and indepen-
dent of the averaging used, provided that v̂v ¼ 0. This property will be demonstrated in subsequent com-
puted results.

4.5. Relationship to previous preconditionings

Turkel [2,9] has reviewed numerous approaches to preconditioning. Of particular interest here is Turkel�s
[2] general preconditioning matrix P0 defined relative to entropy variables w0, but also given as PT for

w ¼ ðp; u;TÞT. Turkel shows that the matrix PT, which depends on three parameters ðb; a; dÞ, reduces to
preconditionings of Turkel et al. [2,9] ðd ¼ 0Þ, Choi and Merkle [11] ða ¼ 0; d ¼ 1Þ, and Weiss and Smith
[12] ða ¼ 0; d ¼ 0Þ. In the present notation, the preconditioning matrix Cw is related to Turkel�s PT by

C�1w  MmP�1T : ð4:15Þ

All of these preconditioning matrices have parameters that depend on local flow variables, with some type

of limiter to avoid singularities at stagnation points. In this regard, it is of interest to compare the present

preconditioned eigenvalues with those of two previous methods. The acoustic eigenvalues given by Choi

and Merkle [6] for their inviscid preconditioning can be written as

ul

2
ð1þM2Þ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2l
4
ð1�M2Þ2 þ u2l

r
; ð4:16Þ
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where ul, denotes the local dimensional velocity, and M is local Mach number. Recalling that ĉc2 ¼ T̂T =M2
r ,

the present eigenvalues (4.12) can be written as

ûu
2
ð1þM2

r Þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ûu2

4
ð1�M2

r Þ
2 þ T̂T

r
: ð4:17Þ

Note that the nondimensional, local, averaged variables ûu and T̂T are both Oð1Þ quantities as long as the
reference quantities Ur and Tr are indicative of the global flow behavior, thus guaranteeing that the ei-

genvalues are well behaved as Mr ! 0. Since ul ! 0 at stagnation points, (4.16) is degenerate, whereas

(4.17) reduces to 

ffiffiffiffî
TT

p
as ûu! 0. The eigenvalue behavior is thus substantially different near stagnation

points, even though the forms of the diagonal preconditioning matrices are similar.

Similarly, the acoustic eigenvalues of Weiss and Smith [12] can be written as

ul

2
ð1þ bU 2

refÞ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2l
4
ð1� bU 2

refÞ
2 þ U 2

ref

r
; ð4:18Þ

where b ¼ ðqp þ qT=qCpÞ. For an ideal gas, Urefð�; julj; clÞ is a local velocity limited by the local sound speed
cl, and �cl. Both inviscid ð� � 10�5Þ and viscous ðm=DxÞ limiters are used for Uref . When q ¼ qðT Þ or for an
incompressible fluid, Urefð�; julj;UmaxÞ depends on the maximum velocity in the field Umax. At stagnation

points, these eigenvalues are controlled by the limiter, reducing to either 
�cl or 
�Umax, both relatively

small values.

Weiss and Smith [12] also use a preconditioned modification of Roe�s flux-difference scheme [19] in terms
of w ¼ ðp; u; T ÞT variables. Their preconditioning can be related to the present notation by

C�1w ¼ K�1ðKMmÞH: ð4:19Þ

Here, K is the matrix that transforms the Euler equations to nonconservative form, and the single oc-

currence of oq=op in the matrix KMm has been replaced by a preconditioning function oq=op  H �
½U�2ref � qT=qCp�. The final flux formula and finite volume scheme can be expressed as

F iþ1=2 ¼
1

2
ðFL þ FRÞ �

1

2
C�1w jCwMamjDw; ð4:20aÞ

ðC�1w Þi
owi

ot
þ ðdA=V ÞiðF iþ1=2 � F i�1=2Þ ¼ 0: ð4:20bÞ

These formulas can be compared with (4.4) and (4.5) and (4.7)–(4.10).

5. Iterative implicit unsteady flow solver

5.1. Upwind finite-volume scheme

The three-dimensional unsteady compressible Reynolds-averaged Navier–Stokes equations are solved by

introducing preconditioning, when needed, to facilitate iterative solution at each physical time step. A cell-

centered finite-volume scheme for a dynamic curvilinear coordinate system can be written as

ðMC�1q ÞV
oq

os
¼ �½diðF � FvÞ þ djðG � GvÞ þ dkðH �HvÞ� ¼ �RðqÞ: ð5:1Þ
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Here, RðqÞ is the steady residual vector, q ¼ Jðq; u; v;w; pÞT is the solution vector, and J is the Jacobian of
the inverse coordinate transformation. The inviscid flux vectors are F, G, H, the viscous flux components
including modeled turbulent stresses are Fv, Gv, Hv, and s is time. The central difference operators are
defined as in dið�Þ � ð�Þiþ1=2 � ð�Þi�1=2 for each i, j, k direction, corresponding to the respective curvilinear n,
g, and f coordinate directions. A subscript ð�ÞV denotes a volume-averaged quantity. Detailed definitions
are given in [23].

5.2. Numerical fluxes

The inviscid flux vectors at each cell face are obtained using the numerical flux formulas (2.14) or (4.4),

with van Leer�s MUSCL extrapolation of left and right state vectors, qR and qL, as implemented in the
third-order form of Anderson et al. [37], and with a van Leer limiter. The flux approximation for the i
direction is as in (2.7), or (4.4) with preconditioning. Analogous definitions for the j and k direction fluxes

are obtained by replacing ½i;F; a� by ½j;G ; b� or ½k;H ; c�, and using corresponding eigensystems to define b

and c
. Details and nonsingular eigensystems that use metric information from only one direction are given

in Appendix A.

5.3. Iterative implicit unsteady algorithm

An iterative implicit nonlinear scheme for solving (5.1) is given by

ðMC�1q Þ
s
V Dqn;sþ1=Ds ¼ �Rðqnþ1;sþ1Þ; ð5:2Þ

where Dð�Þn � ð�Þnþ1 � ð�Þn, and s ¼ 0; 1; . . . is an iteration index. For the nonlinear spatial residual, a dis-
crete linearization about a previous iteration state qnþ1;s is written in the form

Rðqnþ1;sþ1Þ ¼ Rðqnþ1;sÞ þLnþ1;sðDsq
nþ1;sÞ þOðDsq

nþ1;sÞ2; ð5:3Þ

where Dsð�Þ � ð�Þsþ1 � ð�Þs, andLnþ1;sð�Þ is a linear spatial difference operator made up of flux derivatives to
be defined subsequently. This leads to the following iterative linearized implicit scheme:

½Ds�1ðMC�1q Þ
s
V þLnþ1;sð�Þ�ðDsq

nþ1;sÞ ¼ �RUðqnþ1;sÞ: ð5:4Þ

Here, the physical unsteady residual RU is defined as either

RUðqnþ1;sÞ ¼ ½Ds�1Mnþ1
V ðqnþ1;s � qnÞ þ Rðqnþ1;sÞ� ð5:5aÞ

or using the conservative time derivative form

RUðqnþ1;sÞ ¼ ½Ds�1½Qðqnþ1;sÞ �QðqnÞ� þ Rðqnþ1;sÞ�: ð5:5bÞ

The converged solution then satisfies the physical unsteady approximation RU ¼ 0 with or without pre-
conditioning. The first-order time accurate approximations in (5.5a) and (5.5b) were used for all present

calculations, but these are easily modified for higher-order backward-Euler time approximations.

5.4. Numerical state-vector flux linearization

The flux linearization matrices are computed numerically, as proposed by Whitfield and Taylor [22,23].

The authors have found that accurate linearization matrices provide better stability and iterative conver-

gence rates than more approximate flux Jacobians. Whitfield and Taylor [24] also proposed a new nu-
merical flux linearization in which the numerical fluxes (i.e., F iþ1=2) are differentiated with respect to the left
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and right solution-variable state vectors qR and qL, instead of the nodal values qi, and qiþ1. This technique is

more economical, avoids the issue of whether to omit derivatives with respect to qiþ2 in high-order fluxes,

and also seems to perform well in practical calculations. These numerical state-vector flux linearizations are

defined [24] by

ÂAþi ¼
oF iþ1=2

oqLiþ1=2
; ÂA�i ¼

oF i�1=2

oqRi�1=2
ð5:6Þ

and the kth column of each matrix is evaluated as in

ÂAþi ¼ ½F iþ1=2ðqRiþ1=2; qLiþ1=2 þ hekÞ � F iþ1=2ðqRiþ1=2; qLiþ1=2Þ�=h; ð5:7Þ

where ek is the kth unit vector and h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
machine zero
p

. Analogous definitions apply to B̂Bj and ĈCj. The

linearized flux derivative operative Lnð�Þ can now be defined as

Lnð�Þ ¼ �ÂAþi�1ð�Þi�1 þ ðÂA
þ
i �ÂA

�
i Þð�Þi þÂA

�
iþ1ð�Þiþ1 � B̂Bþj�1ð�Þj�1 þ ðB̂B

þ
j � B̂B�j Þð�Þj þ B̂B�jþ1ð�Þjþ1

� ĈCþk�1ð�Þk�1 þ ðĈC
þ
k � ĈC�k Þð�Þk þ ĈC�kþ1ð�Þkþ1: ð5:8Þ

5.5. Solution of the linearized scheme using LU/SGS relaxation

The solution of the linearized scheme (5.4) for Dsq
nþ1;s is obtained by lower–upper Symmetric Gauss–

Seidel (LU/SGS) relaxation. Introducing a second subiteration index m and appropriate definitions for the

matrix D and operators L1, and L2, the LU/SGS scheme can be written as

½Dnþ1;s þLnþ1;s
1 ð�Þ�ðDsq

nþ1;sÞ� þLnþ1;s
2 ðDsq

nþ1;sÞm ¼ RUðqnþ1;sÞ;
½Dnþ1;s þLnþ1;s

2 ð�Þ�ðDsq
nþ1;sÞmþ1 þLnþ1;s

1 ðDsq
nþ1;sÞ� ¼ RUðqnþ1;sÞ:

ð5:9Þ

The definitions of D, L1, and L2 for the LU/SGS scheme are:

Dð�Þ ¼ ½Ds�1ðMC�1q ÞV þ ðÂA
þ
i �ÂA

�
i Þ þ ðB̂B

þ
j � B̂B�j Þ þ ðĈC

þ
k � ĈC�k Þ�ð�Þi;j;k; ð5:10aÞ

L1ð�Þ ¼ �ÂAþi�1ð�Þi�1 � B̂Bþj�1ð�Þj�1 � ĈCþk�1ð�Þk�1; ð5:10bÞ

L2ð�Þ ¼ þÂA�iþ1ð�Þiþ1 þ B̂B�jþ1ð�Þjþ1 þ ĈC�kþ1ð�Þkþ1; ð5:10cÞ

which satisfy the following consistency relationship:

Dð�Þ þL1ð�Þ þL2ð�Þ ¼ Ds�1ðMC�1q ÞV ð�Þ þLð�Þ: ð5:11Þ

The solution is updated as in qnþ1;sþ1  qnþ1;s þ Dsq
nþ1;s following a specified number of LU/SGS iterations.

The quantity Dsq
nþ1;s approaches zero as the s-iteration converges, giving a solution to RUðqnþ1Þ ¼ 0.

6. Inviscid shock-tube results without preconditioning

Computed results are given for a one-dimensional inviscid shock-tube problem solved in the region

(06 x6 1). The initial discontinuity is located at the center of the region x ¼ 0:5, and the initial left and
right states are
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qLðq; u; pÞ ¼ ð1; 0; c�1Þ
T
;

qRðq; u; pÞ ¼ ð1=8; 0; c�1=10Þ
T
:

ð6:1Þ

All solutions were computed using the third-order inviscid flux, with 15 Newton iterations and 15 linear
subiterations at each time step. Convergence of the unsteady residual to machine zero required only 10

Newton iterations, although 15 were computed. The computed profiles for the shock propagation are

shown at a nondimensional time of 0.17, after 1000 steps with Dt ¼ 0:00017, which corresponds to

CFL ¼ 2. The uniform grid has 200 points with spacing Dx ¼ 0:005.
In Fig. 1, profiles computed with the present primitive-variable scheme using q ¼ ðq; u; pÞT variables with

fluxes evaluated using both algebraic and Roe averages are compared with the exact solution. These profiles

are compared with the exact solution and also with profiles computed with an existing compressible code

[38] that uses conservative variables and the standard Roe flux with ~AAðQL;QRÞ. All of the computed profiles
in Fig. 1 are almost identical, and all agree reasonably well with the exact solution. These results serve to

demonstrate that the primitive-variable flux with algebraic averages has accuracy similar to those obtained

with Roe averages, as well as the standard Roe flux. Recall that the q variables and algebraic averages offer
the least complexity.

Another comparison is shown in Fig. 2 for the primitive-variable fluxes based on each of the variable

choices q ¼ ðq; u; pÞT, w1 ¼ ðq; u; T ÞT, and w2 ¼ ðp; u; T ÞT, using algebraic averages and using quasilinear
time derivatives in the unsteady residual, as in (5.5a). Again, the computed profiles are almost identical,

suggesting that the choice of primitive variables is not important for this particular problem. Finally, in Fig.
3, solutions for these same three variable choices are given for algebraic averages and conservative time

derivatives as in (5.5b). Again, there is little difference for this test problem.

Fig. 1. Comparison of exact profiles for the shock-tube problem with profiles computed using the standard Roe flux and using the

present scheme in ðq; u; pÞ variables with both algebraic and Roe averages ðb ¼ Mr ¼ 1Þ.
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Fig. 2. Comparison of exact profiles for the shock-tube problem with profiles computed with three primitive variable choices and with

quasilinear time derivatives in unsteady residual ðb ¼ Mr ¼ 1Þ.

Fig. 3. Comparison of exact profiles for the shock-tube problem with profiles computed with three primitive variable choices and with

conservative time derivatives in unsteady residual ðb ¼ Mr ¼ 1Þ.

W.R. Briley et al. / Journal of Computational Physics 184 (2003) 79–105 93



It is worth noting that none of the present solutions required any type of entropy modification to

prevent rarefaction shocks. Godunov�s method with Roe�s Riemann solver has required an entropy fix
for a similar problem (cf. Toro [18]). No effort has been made to explain this, however, and it is quite

possible that shock-capturing anomalies would be encountered in other cases using the present scheme.

Many shock-capturing anomalies have been reported for different algorithms and flow cases (cf. Quirk

[39]), including the ‘‘carbuncle phenomenon’’ for blunt-body flows. Liou [40] has recently studied

shock instability in shock-capturing schemes and suggested a method for developing shock-stable

schemes.

7. Test cases with preconditioning

7.1. Viscous resolution for laminar boundary layer flow

It was suggested in Section 1 that a conservative characteristic-based flux formulation is advantageous

for high resolution of boundary-layer regions. This issue is examined here for a laminar boundary-layer

flow past a flat plate with a rectangular (71� 21) grid with 50 uniform intervals with spacing Dx ¼ 0:02
along the unit length of the plate. The normal-direction grid is distributed to provide increased resolution

near the wall, with minimum spacing of Dy ¼ 10�4 at the wall. The grid extends to a distance of 5 lengths
upstream and downstream of the leading edge, and 5 lengths to the outer boundary. The freestream and

reference Mach numbers are 10�3 for all flat-plate solutions.

In Fig. 4, three solutions are shown for the velocity profile at midchord, each computed with the present

scheme using q variables and algebraic averages for fluxes. The first two solutions are inviscid solutions

Fig. 4. Computed midchord velocity profiles for flow past a flat plate: Inviscid flow with slip and no-slip conditions, and viscous flow

at Re ¼ 104 compared with the Blasius solution ðMr ¼ 10�3Þ.

94 W.R. Briley et al. / Journal of Computational Physics 184 (2003) 79–105



computed for zero viscosity. One is a uniform flow with inviscid slip condition at the wall boundary, while

the other imposes a zero velocity no-slip condition. The exact solution for the latter solution is an inviscid

slip-line discontinuity located at the wall, and this is the limiting solution for infinite Reynolds number.

Both of these solutions reproduce the corresponding exact solution. As the Reynolds number is reduced,

the viscous terms cause the vortex sheet to diffuse and form a boundary layer along the plate. The third

solution shows the velocity profile for Re ¼ 104, which agrees very well with the Blasius similarity solution,
even with only six grid intervals in the boundary layer.

The minimum resolution required for this particular flow case is explored further in Figs. 5 and 6,
which show the influence of different grid spacings normal to the wall both on the midchord velocity

profile, and on the axial distribution of skin friction coefficient Cf ¼ sw=
1
2
q0U

2
0 . Although the leading-

edge region is not well resolved for these grids, it can be seen in Figs. 5 and 6 that with as few as five

points in the boundary layer at midchord, both the velocity profile and the skin friction distribution are

reasonably well-predicted downstream of the leading edge. The large error in Cf caused by poor reso-

lution near the leading edge is also evident. The good agreement with only seven points in the midchord

boundary layer is noteworthy, and a possible explanation is the flux property that preserves slip-line

discontinuities.

7.2. Laminar and turbulent flow past a flat plate at low Mach number

The influence of Mach number on solutions computed using the preconditioned formulation is ex-
plored here for both laminar and turbulent flow past a flat plate at low Mach numbers. Recall that if

adiabatic wall conditions are used, these compressible perfect-gas solutions closely approximate an

incompressible flow (cf. [3]). The turbulent solutions use a q� x turbulence model [41,42], with wall

spacing of yþ � 1 at the wall. These solutions are computed with the present scheme using q variables

Fig. 5. Effect of normal grid spacing on midchord velocity profile for a flat plate ðMr ¼ 10�3Þ.
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and fluxes evaluated with algebraic averages. The rectangular grids are (71� 21) for laminar flow and

(71� 41) for turbulent flow, with 50 uniform intervals with spacing Dx ¼ 0:02 along the unit length of
the plate. The normal-direction grid is distributed to provide increased resolution near the wall, with
minimum spacing at the wall of Dy ¼ 10�4 for laminar flow and Dy ¼ 10�6 for turbulent flow. The grids
extend to a distance of 5 lengths upstream and downstream of the leading edge, and 5 lengths to the

outer boundary.

In Fig. 7, the convergence behavior is shown for both laminar and turbulent solutions with Mr ¼ 0:001,
0.01, 0.1, 0.3. The convergence behavior is essentially independent of Mach number in both cases. The

convergence behavior does depend on minimum grid spacing near the wall, however, and this accounts for

the difference in convergence rates for laminar and turbulent cases. Multigrid acceleration has significantly

improved the convergence rate of a similar flow solver using artificial compressibility [43,44] and is expected
improve the present scheme.

In Figs. 8 and 9, the midchord velocity profiles are shown. These are also found to be essentially in-

dependent of Mach number and to agree with the Blasius profile for laminar flow and the logarithmic law

of the wall for turbulent flow. The influence of different grid spacings normal to the wall is shown in Fig. 10

for the turbulent case. The results in Figs. 5 and 10 demonstrate that the present preconditioned scheme can

give reasonably accurate velocity profiles with only five to seven points in the laminar layer and about ten to

twenty points in the turbulent layer.

7.3. Flow past a circular cylinder at low Reynolds number

This same flow solver was tested for flow past a circular cylinder for low Reynolds number cases with

freestream Mach number M1Mr ¼ 0:001. These solutions were computed for an O-grid of size (91� 61)
with outer boundary located 20 diameters from the cylinder. A time step CFL ¼ 20 was used, with a single
Newton iteration and 15 linear subiterations. The convergence behavior for Re¼ 1, 20, and 40 with adi-
abatic wall, and for Re¼ 40 with Tw ¼ 5:0 and 0.2 are shown in Fig. 11, and the converged surface pressure

Fig. 6. Effect of normal grid spacing on skin friction coefficient distribution for a flat plate ðMr ¼ 10�3Þ.
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distributions are compared with experimental measurements of Grove et al. [45] and Fornberg [46] in Fig.

12. Although round-off errors become noticeable for this and smaller Mach numbers, round-off control has
not yet been implemented. Choi and Merkle [11] also solved these same adiabatic cases and have given a

Fig. 8. Midchord laminar velocity profiles as influenced by Mach number ðb ¼ M2
r Þ.

Fig. 7. Convergence behavior for flat-plate boundary layer as influenced by Mach number for the preconditioned scheme ðb ¼ M2
r Þ.
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method to control similar round-off errors. The convergence rates and accuracy observed in Figs. 11 and 12

are reasonable for all flow cases and are comparable to those of [11]. Computed velocity contours for the

three adiabatic cases are shown in Fig. 13.

Fig. 10. Effect of normal grid spacing on velocity profile at x=c ¼ 0:67 for a flat plate ðMr ¼ 10�3Þ.

Fig. 9. Midchord turbulent velocity profiles as influenced by Mach number ðb ¼ M2
r Þ.
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8. Validation for transonic and incompressible flows

One motivation for this work has been a single algorithm and code that is applicable to variable Mach

number flows ranging from incompressible to supersonic. Accordingly, this section considers the validation

Fig. 11. Convergence behavior for flow past a circular cylinder at ðM1 ¼ 10�3Þ for Re¼ 1, 20, and 40 with adiabatic wall, and for
Re¼ 40 with Tw ¼ 5:0 and 0.2 (Mr ¼ 10�3, b ¼ M2

r ).

Fig. 12. Flow past a circular cylinder at ðM1 ¼ 10�3Þ: computed surface pressure coefficient, compared with experimental measure-
ments of Grove et al. [45], and Fornberg [46].
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against experimental data for two problems, one an incompressible flow past an axisymmetric submarine

hullform known as SUBOFF [47], and the other a transonic flow past a two-dimensional airfoil know as

RAE 2822 [48]. These two cases have also been used as validation for an existing compressible flow solver

[38], and an incompressible flow solver [44]. These results therefore provide direct validation of the present

method by comparison with both experimental data and two completely different computer codes and flow
solvers.

8.1. Incompressible flow past an axisymmetric submarine hull

Incompressible (constant density) flows can be closely approximated by using the preconditioned al-

gorithm with a small value ofMr, as shown previously in [3,10] for steady isoenergetic flows. This is possible

Fig. 13. Flow past a circular cylinder at ðM1 ¼ 10�3Þ: computed velocity contours for Re¼ 1, 20, and 40.

Fig. 14. (a) Flow past the SUBOFF hull at zero incidence: visualization of axial velocity in a vertical cutting plane. (b) Flow past the

SUBOFF hull at zero incidence: computed and measured surface pressure coefficient. (c) Flow past the SUBOFF hull at zero inci-

dence: computed and measured friction coefficient.
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since the compressible formulation reduces to the incompressible formulation, provided the total enthalpy

is constant [3]. The energy equation is included in the present system of equation, and consequently, to

approximate an incompressible flow it is only necessary to impose adiabatic boundary conditions and select

Mr to be less than about 0.1; the present solution was obtained for Mr ¼ 0:001. The SUBOFF hull case has
zero incidence and Reynolds number based on hull length of ReL ¼ 12� 106. The grid size is (129� 65� 2),
with minimum yþ < 0:5, and local time stepping is used with local CFL ¼ 10, 1 Newton iteration, and 5
SGS iterations per time step. Results from this case are shown in Figs. 14(a)–(c).

In Fig. 14(a), computed axial velocity contours are shown for a vertical cutting plane. In Fig. 14(b),
the computed surface pressure coefficient is compared both with the experimental data of Huang et al.

[47] and with a solution from an existing incompressible code [44]. The agreement is excellent in the area

near the stern where viscous effects are important. The difference between the two computed solutions

and the data near the bow is attributable to physical entrance effects in the test section of the experiment.

In Fig. 14(c), the computed and measured friction coefficients are shown and are generally in good

Fig. 15. Flow past an RAE 2822 airfoil atM1 ¼ 0:734� and 2.79� incidence ðb ¼ M2
r Þ: (a) Computed pressure contours. (b) Computed

surface pressure coefficient compared with experimental data and solutions for viscous and inviscid flow using an existing compressible

code. (c) Computed friction coefficient compared with experimental data and a solution using an existing compressible code.
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agreement. The two computed solutions differ near the bow because the turbulent transition point was

not forced in these solutions but was allowed to develop according to the turbulence model solution,

giving a slightly different transition point for the two solutions. This is not regarded as an accurate

prediction of transition.

8.2. Transonic flow past a two-dimensional airfoil

The conditions for the RAE 2822 airfoil are as follows: M1 ¼ Mr ¼ 0:734, incidence of a ¼ 2:79�, and
chordal Reynolds number of Rec ¼ 6:5� 106. The grid size is (481� 81), with minimum yþ < 1:0, and
local time stepping is used with local CFL ¼ 10, 1 Newton iteration, and 5 SGS iterations, per time step.
Results from this case are shown in Figs. 15(a)–(c). Fig. 15(a) shows computed pressure contours. In

Fig. 15(b), the computed surface pressure coefficient distribution is compared both with experimental
data of Cook et al. [48] and with viscous and inviscid solutions computed with an existing compressible

code [38]. The two viscous computations agree well with both the data and with each other, including

the location and strength of the shock. The significant differences with the inviscid solution are at-

tributable to strong viscous/inviscid interaction near the shock. In Fig. 15(c), the computed friction

coefficients are compared with measurements and agree well except downstream of the shock. The

difference in the two computed solutions near the leading edge is again due to a difference in location of

the transition point.

9. Concluding remarks

A preconditioned, characteristics-based, primitive-variable, flux-difference formulation has been devel-

oped and demonstrated for a range of one and two-dimensional flows. These included an inviscid shock-

tube case, flat-plate boundary layer flow at low Mach number, viscous flow past a circular cylinder at low

Reynolds number and with different thermal boundary conditions, and validation cases for incompressible

and transonic flows. The choices q ¼ ðq; u; v;w; pÞ for nondimensional primitive variables, algebraic aver-
ages for flux computations, and a simple preconditioning related to a reference Mach number, provide

simplicity and preserve slip-line discontinuities. This pre-conditioned viscous flow solver performed well for

all problems considered.
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Appendix A. Three-dimensional formulation

A.1. Governing equations in general dynamic curvilinear coordinate systems

The unsteady three-dimensional Navier–Stokes equations without body forces are first written in

Cartesian coordinates and then transformed to general time-dependent curvilinear coordinates as in

n ¼ nðx; y; z; tÞ; g ¼ gðx; y; z; tÞ; f ¼ fðx; y; z; tÞ; s ¼ t: ðA:1Þ
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Letting k denote any one of the transformed coordinates n; g; f, the transformation metrics ok=ox, ok=oy,
ok=oz can be denoted as kx, ky , kz, respectively. It is also convenient to adopt unit grid spacings ðDn ¼ Dg ¼
Df ¼ 1Þ for the transformed coordinates. The Navier–Stokes equations can then be written as

MC�1
oq
os
þ o

on
ðF � FvÞ þ

o

og
ðG � GvÞ þ

o

of
ðH �HvÞ ¼ 0; ðA:2Þ

where

q ¼ J

q
u
v
w
p

2
66664

3
77775; K ¼ J

qhk

quhk þ kxp
qvhk þ kyp
qwhk þ kzp

et þ abp½ �hk � ktabp

2
66664

3
77775; ðA:3Þ

K v ¼ J

0
Tkx

Tky

Tkx

Qk

2
66664

3
77775;

with

hk ¼ kxuþ kyvþ kzwþ kt;

Tkx ¼ kxsxx þ kysyx þ kzszx;

Tky ¼ kxsxy þ kysyy þ kzszy ;

Tkz ¼ kxsxz þ kysyz þ kzszz;

Qk ¼ uTkx þ vTky þ wTkz þ kxqx þ kyqy þ kzqz

ðA:4Þ

and

K ¼ F ; Kv ¼ Fv for k ¼ n;

K ¼ G; Kv ¼ Gv for k ¼ g;

K ¼ H ; Kv ¼ Hv for k ¼ f:

ðA:5Þ

Here, a � c� 1 and b � M2
r are constants, and skx, sky , skz, and qk denote thin-layer approximations for

shearing stress and heat flux. The Jacobian of the inverse transformation oðx; y; z; tÞ=oðn; g; f; sÞ is given
by

J ¼ xnðygzf � zgyfÞ � ynðxgzf � zgxfÞ þ znðxgyf � ygxfÞ: ðA:6Þ

A.2. Preconditioned matrices and eigensystems for q ¼ ðq; u; v;w; pÞ variables

The preconditioning matrix is given by

C ¼ diagð1; 1; 1; 1; bÞ: ðA:7Þ
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The Jacobian for the change to primitive variables is

M ¼

1 0 0 0 0

u q 0 0 0
v 0 q 0 0

w 0 0 q 0

ab/ abqu abqv abqw b

2
66664

3
77775; ðA:8Þ

where / � ðu2 þ v2 þ w2Þ=2. The system matrix is

Ca ¼

hk qkx qky qkz 0

0 hk 0 0 kx=q
0 0 hk 0 ky=q
0 0 0 hk kz=q
0 bkxqc2 bkyqc2 bkzqc2 bhk

2
66664

3
77775: ðA:9Þ

The eigenvalues Ca are

kk ¼ hk; hk; hk; hkb
þ þ r; hkb

þ � r; ðA:10Þ

where

r2 � ðhkb
�Þ2 þ bc2 ðA:11Þ

with b
 � ð1
 bÞ=2. A nonsingular set of right eigenvectors for Ca is given by

Rk ¼

kx ky kz
q

bc2 ðhkb
� þ rÞ �q

bc2 ðhkb
� � rÞ

0 �kz ky kx �kx

kz 0 �kx ky �ky

�ky kx 0 kz �kz

0 0 0 �qðhkb
� � rÞ qðhkb

� þ rÞ

2
66664

3
77775: ðA:12Þ
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